九十七學年第一學期 PHYS2310 電磁學 期中考試題(共兩頁)

[Griffiths Ch.1-3] 2008/11/18, 10:10am-12:00am, 教師:張存續

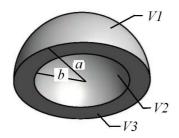
記得寫上學號,班別及姓名等。請依題號順序每頁答一題。

Useful formulas

$$\nabla V = \frac{\partial V}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\mathbf{\theta}} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\mathbf{\phi}} \quad \text{and} \quad \nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} v_\phi$$

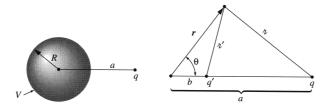
- 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown in the figure, where $V_1(a,\theta) = 0$, $V_2(b,\theta) = V_0(2\cos\theta 5\cos\theta\sin^2\theta)$, $V_3(r,\pi/2) = 0$. V_0 is a constant.
 - (a) Show the general solution in the region $b \le r \le a$.
 - (b) Determine the potential in the region $b \le r \le a$, using the boundary conditions.
 - (c) Calculate the electric field in the region $b \le r \le a$.

[Hint:
$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = (3x^2 - 1)/2$, and $P_3(x) = (5x^3 - 3x)/2$.]



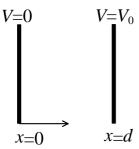
- 2. (10%, 10%) A point charge q is situated a large distance ${\bf r}$ from a neutral atom of polarizability α .
 - (a) Find the induced dipole moment of the atom **p**.
 - (b) Find the force between them (attractive or repulsive).
- 3. (10%, 10%) A point charge q is situated at distance a from the center of a conducting sphere of radius R. The sphere is maintained at the constant potential V_0 .
 - (a) Find the position and the value of the image charge.
 - (b) Verify that the tangential component of the electric field is zero throughout on the surface of the metal sphere.

[Hint: 1. use the notations shown below. 2. Assume q lays on the z-axis]



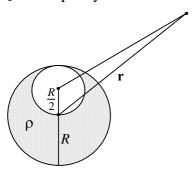
- 4. (8%, 6%, 6%) Consider two infinite parallel metal plates separated by a distance s are at potential 0 and V_0 as shown in the figure.
 - (a) Use Poisson's equation to find the potential V in the region between the plates where the space change density is $\rho = \rho_0 \frac{x}{d}$.
 - (b) Find the electric field **E** in the region between the plates.
 - (c) Use the boundary condition to determine the charge densities on the plates.

[Note: The electric field inside the metal plate is zero $E_{inside} = 0$.]



- 5. (8%, 6%, 6%) Consider a hollowed charged sphere with radius R and uniform charge density ρ as shown in the figure. The inner radius of the spherical cavity is R/2.
 - (a) If the observer is very far from the charged sphere, find the multiple expansion of the potential V in power of 1/r
 - (b) Find the dipole moment **p**.
 - (c) Find the electric field **E** up to the dipole term.

[Note: Specify a vector with both magnitude and direction.]



1.

(a)

Boundary condition
$$\begin{cases} (i) \ V_{1}(a,\theta) = 0 \\ (ii) \ V_{2}(b,\theta) = V_{0}(2\cos\theta - 5\cos\theta\sin^{2}\theta) = V_{0}(5\cos^{3}\theta - 3\cos\theta) = 2V_{0}P_{3} \\ (ii) \ V_{3}(r,\theta = \pi/2) = 0 \end{cases}$$

General solution $V(r,\theta) = \sum_{\ell=0}^{\infty} (A_{\ell} r^{\ell} + B_{\ell} r^{-(\ell+1)}) P_{\ell}(\cos \theta)$

(b)

B.C. (i)
$$\rightarrow V(a,\theta) = \sum_{\ell=0}^{\infty} (A_{\ell}a^{\ell} + B_{\ell}a^{-(\ell+1)})P_{\ell}(\cos\theta) = 0 \implies B_{\ell} = -A_{\ell}a^{2\ell+1}$$

B.C. (ii)
$$\rightarrow V(b,\theta) = \sum_{\ell=0}^{\infty} (A_{\ell}b^{\ell} + B_{\ell}b^{-(\ell+1)})P_{\ell}(\cos\theta) = 2V_0P_3(\cos\theta)$$

Comparing the coefficiency $\Rightarrow A_3b^3 + B_3b^{-4} = 2V_0$, $A_{\ell} = B_{\ell} = 0$ for $\ell = 0, 1, 2, 4, 5, ...$

B.C. (iii)
$$\rightarrow V(r, \theta = \frac{\pi}{2}) = (A_3 r^3 + B_3 r^{-4}) P_3(0) = 0$$

$$\Rightarrow A_{\ell} = B_{\ell} = 0 \text{ except } \ell = 3,$$

$$A_3 = \frac{2V_0b^4}{b^7 - a^7}$$
 and $B_3 = -\frac{2V_0b^4a^7}{b^7 - a^7}$

$$\therefore V(r,\theta) = \left(\frac{2V_0}{b^7 - a^7}b^4r^3 - \frac{2V_0}{b^7 - a^7}b^4a^7r^{-4}\right)\left(\frac{5\cos^3\theta - 3\cos\theta}{2}\right)$$

(c)

$$\begin{split} V(r,\theta) = & \left(\frac{2V_0}{b^7 - a^7} b^4 r^3 - \frac{2V_0}{b^7 - a^7} b^4 a^7 r^{-4} \right) \left(\frac{5\cos^3 \theta - 3\cos \theta}{2} \right) \\ \mathbf{E} = & -\nabla V = -\frac{\partial V}{\partial r} \hat{\mathbf{r}} - \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\mathbf{\theta}} \\ = & - \left(\frac{6V_0}{b^7 - a^7} b^4 r^2 - \frac{8V_0}{b^7 - a^7} b^4 a^7 r^{-5} \right) \left(\frac{5\cos^3 \theta - 3\cos \theta}{2} \right) \hat{\mathbf{r}} \\ & + \left(\frac{6V_0}{b^7 - a^7} b^4 r^2 - \frac{8V_0}{b^7 - a^7} b^4 a^7 r^{-5} \right) \left(\frac{15\cos^2 \theta \sin \theta - 3\sin \theta}{2} \right) \hat{\mathbf{\theta}} \end{split}$$

2.

(a)

The electric field of a point charge $\mathbf{E} = \frac{1}{4\pi\varepsilon} \frac{q}{r^2} \hat{\mathbf{r}}$

The induced dipole moment $\mathbf{p} = \alpha \mathbf{E} = \frac{1}{4\pi\varepsilon} \frac{\alpha q}{r^2} \hat{\mathbf{r}}$

(b)

The total electric static energy $U = -(\frac{1}{2})\mathbf{p} \cdot \mathbf{E} = -(\frac{1}{2})(\frac{1}{4\pi\varepsilon})^2 \frac{\alpha q^2}{r^4}$

Note: $(\frac{1}{2})$ comes from the fact that the dipole moment **p** is induced by **E**.

The force bewteen is $\mathbf{F} = -\nabla U = -2\alpha (\frac{1}{4\pi\varepsilon})^2 \frac{q^2}{r^5} \hat{\mathbf{r}}$ attractive.

The direction of the induced dipole \mathbf{p} is in line with the electric field \mathbf{E} generated by the charge q.

3.(a)

Assume the image charge q' is placed at a distance b from the center of the sphere.

It is equipotential on the surface of a grounded sphere.

Using two boundary conditions at P_1 and P_2

At
$$P_1$$
: $\frac{1}{4\pi\varepsilon_0} \left(\frac{q'}{R-b} + \frac{q}{a-R} \right) = 0$

At P_2 : $\frac{1}{4\pi\varepsilon_0} \left(\frac{q'}{R+b} + \frac{q}{a+R} \right) = 0$

two equations and two unknowns $(q' \text{ and } b)$

$$b = \frac{R^2}{a} \text{ (position)}, \quad q' = -\frac{R}{a} q \text{ (value of the image charge)}$$

(b)

The potential outside the sphere when V=0

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{q'}{|\mathbf{r} - b\hat{\mathbf{z}}|} + \frac{q}{|\mathbf{r} - a\hat{\mathbf{z}}|} \right\}, \text{ where } b = \frac{R^2}{a} \text{ and } q' = -\frac{R}{a}q$$

The potential outside the sphere when $V=V_0$

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{4\pi\varepsilon_0 RV_0}{r} + \frac{q'}{|\mathbf{r} - b\hat{\mathbf{z}}|} + \frac{q}{|\mathbf{r} - a\hat{\mathbf{z}}|} \right\}$$
where
$$\begin{cases} |\mathbf{r} - b\hat{\mathbf{z}}| = \sqrt{(r^2 \sin^2 \theta + (r\cos \theta - b)^2} = \sqrt{(r^2 - 2br\cos \theta + b^2)} \\ |\mathbf{r} - a\hat{\mathbf{z}}| = \sqrt{(r^2 \sin^2 \theta + (r\cos \theta - a)^2} = \sqrt{(r^2 - 2ar\cos \theta + a^2)}, \end{cases}$$

On the surface of the metal sphere, $\mathbf{E} = -\nabla V(\mathbf{r}) = -\frac{\partial V}{\partial r}\hat{\mathbf{r}} - \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\mathbf{\theta}}$

$$\begin{split} E_{\theta} &= -\frac{1}{r} \frac{\partial V}{\partial \theta} = -\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \frac{\partial}{\partial \theta} \left\{ \frac{q'}{\sqrt{(r^2 - 2br\cos\theta + b^2)}} + \frac{q}{\sqrt{(r^2 - 2ar\cos\theta + a^2)}} \right\} \\ &= -\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(\frac{q'(-2br\sin\theta)}{(r^2 - 2br\cos\theta + b^2)^{3/2}} + \frac{q(-2ar\sin\theta)}{(r^2 - 2ar\cos\theta + a^2)^{3/2}} \right) \\ &= \frac{2\sin\theta}{4\pi\varepsilon_0} \left(\frac{q'b}{(r^2 - 2br\cos\theta + b^2)^{3/2}} + \frac{qa}{(r^2 - 2ar\cos\theta + a^2)^{3/2}} \right) \end{split}$$

$$\frac{q'b}{(R^2 + 2bR\cos\theta - b^2)^{3/2}} = \frac{-\frac{R}{a}q\frac{R^2}{a}}{(R^2 - 2\frac{R^2}{a}R\cos\theta + \frac{R^4}{a^2})^{3/2}} = \frac{-\frac{R^3}{a^2}q}{\frac{R^3}{a^3}(a^2 - 2aR\cos\theta + R^2)^{3/2}}$$
$$= -\frac{qa}{(R^2 - 2aR\cos\theta + a^2)^{3/2}}$$

$$E_{\theta}(@ r = R) = \frac{2\sin\theta}{4\pi\varepsilon_0} \left(-\frac{qa}{(R^2 - 2aR\cos\theta + a^2)^{3/2}} + \frac{qa}{(R^2 - 2aR\cos\theta + a^2)^{3/2}} \right) = 0$$

4.(a)

$$\frac{d^2V}{dx^2} = -\frac{\rho_0 x}{\varepsilon_0 d} \implies V(x) = -\frac{\rho_0 x^3}{6\varepsilon_0 d} + c_1 x + c_2$$

Use the boundary conditions to determine the coefficiencies.

$$\begin{cases} V(0) = 0 \implies c_2 = 0 \\ V(d) = V_0 = -\frac{\rho_0 d^2}{6\varepsilon_0} + c_1 d \implies c_1 = \frac{V_0}{d} + \frac{\rho_0 d}{6\varepsilon_0} \end{cases}$$

$$V(x) = -\frac{\rho_0 x^3}{6\varepsilon_0 d} + (\frac{V_0}{d} + \frac{\rho_0 d}{6\varepsilon_0})x$$

(b)

$$V(x) = -\frac{\rho_0 x^3}{6\varepsilon_0 d} + (\frac{V_0}{d} + \frac{\rho_0 d}{6\varepsilon_0})x$$

$$\mathbf{E} = -\nabla V(x) = \frac{\rho_0 x^2}{2\varepsilon_0 d} - (\frac{V_0}{d} + \frac{\rho_0 d}{6\varepsilon_0})\hat{\mathbf{x}}$$

(c)

$$\begin{cases} \mathbf{E}_{x=0} = -(\frac{V_0}{d} + \frac{\rho_0 d}{6\varepsilon_0})\hat{\mathbf{x}} \\ \mathbf{E}_{x=d} = (\frac{2\rho_0 d}{3\varepsilon_0} - \frac{V_0}{d})\hat{\mathbf{x}} \end{cases} \Rightarrow \begin{cases} \sigma_{x=0} = \varepsilon_0(E_{outside} - E_{inside}) = -(\frac{\varepsilon_0 V_0}{d} + \frac{\rho_0 d}{6}) \\ \sigma_{x=d} = \varepsilon_0(E_{outside} - E_{inside}) = (\frac{2\rho_0 d}{3} - \frac{\varepsilon_0 V_0}{d}) \end{cases}$$

5.

(a)

Consider this problem as two charge spheres, one with charge density ρ the other with opposite charge density $-\rho$.

$$V_{big} = \frac{1}{4\pi\varepsilon_0 r} (\rho \frac{4\pi}{3} R^3) \text{ and } V_{small} = \frac{1}{4\pi\varepsilon_0 |\mathbf{r} - \frac{1}{2}\mathbf{R}|} (-\rho \frac{4\pi}{3} (\frac{R}{2})^3)$$

$$\frac{1}{\left|\mathbf{r} - \frac{1}{2}\mathbf{R}\right|} = \frac{1}{r} \left(1 + \left(\frac{\frac{1}{2}R}{r}\right)\cos\theta + \ldots\right)$$

Using the principle of superposition, we find,

$$V = \frac{1}{4\pi\varepsilon_0 r} (\rho \frac{4\pi}{3} R^3) - \frac{1}{4\pi\varepsilon_0 r} (\rho \frac{4\pi}{3} (\frac{R}{2})^3) (1 + (\frac{\frac{1}{2}R}{r}) \cos \theta + ...)$$

$$= \frac{1}{4\pi\varepsilon_0 r} \frac{7}{8} (\rho \frac{4\pi}{3} R^3) - \frac{1}{4\pi\varepsilon_0 r} (\rho \frac{4\pi}{3} (\frac{R}{2})^3) (\frac{R}{2r}) \cos \theta + ..., \quad \text{let } Q = \rho \frac{4\pi}{3} R^3$$

$$= \frac{1}{4\pi\varepsilon_0 r} \frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} (\frac{Q}{8} \frac{R}{2}) \cos \theta + ...$$

(b)

$$Q = \rho \frac{4\pi}{3} R^3$$

$$V = \frac{1}{4\pi\varepsilon_0 r} \frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} (\frac{Q}{8} \frac{R}{2}) \cos\theta + \dots$$

The first term is the monopole term and the second term is the dipole term.

So the dipole moment $\mathbf{p} = -\frac{QR}{16}\hat{\mathbf{z}}$.

$$V = \frac{1}{4\pi\varepsilon_0 r} \frac{7Q}{8} - \frac{1}{4\pi\varepsilon_0 r^2} (\frac{Q}{8} \frac{R}{2}) \cos\theta + \dots$$

$$\mathbf{E} = -\nabla V = -\frac{\partial V}{\partial r} \hat{\mathbf{r}} - \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\mathbf{\theta}} - \frac{1}{r \sin\theta} \frac{\partial V}{\partial \phi} \hat{\mathbf{\phi}}$$

$$= \left(\frac{1}{4\pi\varepsilon_0 r^2} \frac{7Q}{8} - \frac{2p}{4\pi\varepsilon_0 r^3} \cos\theta \right) \hat{\mathbf{r}} - \frac{p}{4\pi\varepsilon_0 r^3} \sin\theta \hat{\mathbf{\theta}}$$